Academy of Achievement Logo
Home
Achiever Gallery
  The Arts
  Business
  Public Service
 + Science & Exploration
  Sports
  My Role Model
  Recommended Books
  Academy Careers
Keys to Success
Achievement Podcasts
About the Academy
For Teachers

Search the site

Academy Careers

 

If you like Robert Langer's story, you might also like:
Elizabeth Blackburn,
Linda Buck,
Francis Collins,
Gertrude Elion,
Judah Folkman,
John Gearhart,
Susan Hockfield,
Elizabeth Holmes,
Louis Ignarro,
Willem Kolff,
Ray Kurzweil,
Eric Lander,
Robert Lefkowitz,
Paul MacCready,
Barry Marshall,
Linus Pauling,
George Rathmann,
Jonas Salk,
James Thomson,
Charles Townes,
Bert Vogelstein,
James Watson and
Shinya Yamanaka

Robert Langer can also be seen and heard in our Podcast Center

Related Links:
Langer Lab
MIT BE
Koch Institute

Share This Page
  (Maximum 150 characters, 150 left)

Robert Langer
 
Robert Langer
Profile of Robert Langer Biography of Robert Langer Interview with Robert Langer Robert Langer Photo Gallery

Robert Langer Biography

Biotechnologist and Entrepreneur

Robert Langer Date of birth: August 29, 1948

Print Robert Langer Biography Print Biography

 
  Robert Langer

Robert Langer Biography Photo
Robert Samuel Langer, Jr. was born and raised in Albany, New York. His father was a businessman who ran a billiard parlor in nearby Troy, New York, and then a liquor store in Albany. As a youngster, Robert enjoyed magic tricks, and when he was given a Gilbert chemistry set at age 11, he delighted mixing the colors and observing the chemical reactions. Soon he was making rubber and synthesizing simple plastics. At the Milne School in Albany, he excelled in math and science and he was encouraged by his family to study engineering in college. As a freshman at Cornell University, he most enjoyed his chemistry class, and decided to major in chemical engineering. He graduated from Cornell in 1970 and pursued graduate studies at Massachusetts Institute of Technology (MIT).

As Langer was working towards a doctorate, the U.S. passed through a severe gasoline shortage. American industry was eagerly searching for ways to increase fuel efficiency, and chemical engineers were in high demand. Most of Langer's classmates headed for careers in the energy industry. Langer himself received 20 offers from oil companies, including Shell and Chevron, and four from Exxon alone, but he couldn't interest himself in fuel technology. While studying in Cambridge, he had developed a chemistry and math curriculum for inner city school children, and he was still looking for a career where he could help others more directly than he felt he could do in the oil industry.

Robert Langer Biography Photo
Langer wrote to hospitals and medical schools to see if they could use a chemical engineer, but he received no offers. A friend in Cambridge recommended he contact Dr. Judah Folkman, a Harvard professor who was also chief of surgery at Boston's Children's Hospital. At the time, very few chemical engineers were working in surgical labs, but Dr. Folkman was pursuing an unorthodox approach to cancer research and was willing to employ postdoctoral fellows without conventional medical or biological training. Folkman believed that the spread of cancer and the growth of tumors could be controlled if angiogenesis, the process by which new blood vessels are created, were arrested. He set Langer the task of finding substances to inhibit the creation of new blood vessels.

While in Folkman's lab, Langer pursued a second avenue of research. He was searching for polymers that would permit the gradual timed release of medication within the body. Other scientists had considered this idea and abandoned it as impossible, but Langer believed it could be done and undertook the painstaking process of eliminating possible formulae. In the first two years, he tried more than 200 variations, before finding a technique for modifying polymers that would slowly release the molecules for drug delivery. The same technique facilitated the testing of substances for inhibiting angiogenesis.

Two years into this work, Langer was called on to give a talk about his research for a conference of polymer chemists and engineers, but he was met with incredulity. He fared no better when he submitted research proposals to the National Institutes of Health (NIH). His first nine research grant applications were turned down. From his first publication on angiogenesis, nearly 28 years would elapse before the Food and Drug Administration approved the first anti-cancer drug based on this work.

Robert Langer Biography Photo
After completing his postdoctoral work, Langer applied for positions in chemical engineering departments, but met a cool response. While the biologists at NIH had felt that, as a chemical engineer, Langer couldn't know anything about biology, much less cancer, the chemical engineering faculty at most of the universities where he applied believed his research belonged in the biology department or the medical school. Finally he was offered a post in the Nutrition and Food Science program at MIT, but in his first years at MIT, even this position was precarious.

Since there was little interest in his work in the academic and institutional worlds, he set out to interest the private sector. He began writing patents for his discoveries, in the hope that he could license them to pharmaceutical companies that would finance their further development and bring them to market, where they could benefit patients directly.

His first patents concerned polymer systems for controlled release of macromolecules. Again, he had difficulty persuading others of the value of his ideas. The reviewers at the patent office didn't believe controlled release would work. His application was turned down five times between 1976 and 1981, and the attorney handling his application advised him to give up. When Langer demonstrated the effectiveness of his work, the patent office replied that his work was nothing new. In the end, to prove his work was original, he procured affidavits from the authors of a 1979 paper who had flagged his approach as being far out of the mainstream.

Robert Langer Biography Photo
With patents in hand, Langer applied to NIH for a grant to support developing biodegradable polymers for the delivery of brain cancer drugs, but the reviewers did not believe such polymers could be synthesized. Langer's grant applications were rejected many times in the years to come.

Once he had secured his patents, Langer still had difficulty finding interested companies to pursue his ideas. In 1983, International Minerals & Chemicals licensed one of his patents, and hired him as a consultant for a project using polymers to deliver animal hormones. The following year, Eli Lilly & Co. signed him for a similar project with human hormones, but when the first trials were unsuccessful, these large businesses quickly lost interest. In 1985, Langer made a deal with a much smaller company, Nova Pharmaceuticals of Baltimore, to license one of Langer's patents for the delivery of brain cancer treatment. Unlike the larger companies, Nova was fully committed to innovation. Langer realized that working with small, narrowly focused enterprises was the best way to advance his ideas in the marketplace.

Robert Langer Biography Photo
Even before his success with Nova, Langer had been approached by venture capitalists about starting a company of his own, and in 1987, he and a colleague, Alexander Klibanov, founded Enzytech. The company produced and brought to market a microsphere drug delivery system. Products based on the principles Langer developed have since been used to treat alcoholism, narcotic addiction, diabetes and other diseases. Enzytech was later merged with another company to form Alkermes.

Jay Vacanti, a surgeon at Massachusetts General Hospital, interested Langer in combining three-dimensional synthetic polymer scaffolds with living cells to create new tissues and organs in the laboratory. At the time, Langer was unable to get government grants for this research, so Langer began to look for commercial funding. In 1988, he started a second company, Neomorphics, to produce biocompatible materials for tissue growth. Like Enzytech, Neomorphics was later acquired by larger concerns, Advanced Tissue Sciences and Smith & Nephew. As his ideas achieved success in the marketplace and acceptance in academia, Langer's position at MIT became more secure and he was given a full professorship.

Whereas other researchers tried to find medical applications for existing plastics, Langer identified the qualities he was looking for and synthesized new materials to meet the need, creating a new family of biodegradable polymers, the polyanhydrides. In 1992, Langer founded Focal to produce biodegradable materials for sealants and for the prevention of surgical adhesions. The following year saw the creation of two new enterprises: Enzymed, which produced combinatory pharmaceuticals; and Acusphere, which developed imaging agents with porous microsphere technology. The first two of these concerns were also merged with larger companies, and the third became a publicly traded company, continuing Langer's winning streak in the business world.

Robert Langer Biography Photo
In the 1990s, Robert Langer established a new model of research and development. If a discovery in his laboratory is a genuine breakthrough that offers the possibility of multiple applications, and an exclusive patent can be obtained, and if students or postdoctoral fellows of Langer's have worked with the technology for five years or more, Langer encourages them to start a new company to develop the idea if they are interested. By collaborating with his students in the founding of these businesses, Langer mentors them as both scientists and entrepreneurs. At first, this practice was controversial, but these start-ups have created new treatments for cancer, heart disease and other deadly ailments, while providing employment to thousands.

After the initial start-up period, Langer often withdraws from the enterprise, although sometimes he remains on board as a paid adviser or board member. When a discovery is licensed from MIT, the profits are split between the department, the university and the inventors. MIT scientists are permitted to take equity stakes in the companies that employ their discoveries, but they cannot own shares in businesses that provide research grants to their laboratories, and they cannot serve as executives of outside firms, although they may serve as paid advisers.

In 1996, the FDA approved the use of Langer's controlled-release drug delivery system for the treatment of brain cancer. In the next few years, Langer and his students were responsible for an almost continuous stream of start-ups, bringing new inventions and discoveries to market at a dizzying pace.

Robert Langer Biography Photo
Langer and a former postdoctoral student, David Edwards, now a professor at Harvard, created Advanced Inhalation Research in 1997 to develop pulmonary drug delivery. In 1998, Langer and Jay Vacanti founded Reprogenesis to build polymer scaffolding for regenerative tissue. This technique, once thought controversial, is now the basis of regenerative medicine, which produces artificial skin for patients with severe burns or skin ulcers. The same year, Langer started Sontra Medical (later renamed Echo Therapeutic) to provide transdermal drug delivery.

In 1999, Langer formed MicroCHIPS (with his former graduate student, John T. Santini, Jr.) to develop silicon-chip-based drug delivery, and Transform Pharmaceuticals (later acquired by Johnson & Johnson) for polymorph crystallization. These were followed in the next three years by Combinent Biomedical Systems for transvaginal drug delivery, Pulmatrix for inhaled medication, and Momenta Pharmaceuticals for complex sugar-based therapeutics. Momenta's sugar-sequencing tools have been used to create more effective blood thinners. In the midst of this success, the FDA finally approved the use of an anti-cancer drug based on the research Langer had first published 28 years earlier, as a postdoctoral student in Judah Folkman's surgical laboratory.

Robert Langer Biography Photo
Meanwhile, Langer and his students continued to break new ground in medical research. In 2004, his new company, Pervasis, introduced new therapeutics for vascular healing. The following year saw the creation of three more businesses based on Langer's work. Arsenal Medical, which was founded to develop nanofiber-based drug delivery, eventually split into two companies, Arsenal Vascular and 480 Biomedical, which produces resorbable scaffolds for tissue growth. In Vivo Therapeutics produces scaffolds specifically for spinal cord therapy. Not all of Langer's ventures are concerned with life-threatening disease or crippling injury. Living Proof develops hair and skin care products, including a hair-thickening agent based on a material Langer's lab originally created to treat prostate and ovarian cancer.

Langer oversaw the creation of three new enterprises in 2006: Semprus BioSciences, for medical device coatings; BIND Biosciences for targeted nanoparticle-based therapeutics; and T2 Biosystems for nanoparticle-based diagnostics. The following year saw the birth of Selecta Biosciences for targeted nanoparticles. In 2008, Langer opened Taris Biomedical for urological drug delivery, and Seventh System Biosystems, which produces a microneedle patch for drawing blood outside of medical facilities. This work, along with a controlled-release polio vaccine developed in the Langer Lab, has been financed by the Bill & Melinda Gates Foundation for use in the developing world. In 2009, Langer and a Johns Hopkins professor (and former Langer student), Justin Hanes, started Kala Pharmaceuticals to provide mucosal drug delivery.

Robert Langer Biography Photo
Langer's latest ventures include ModeRNA for modified messenger RNA delivery, and Blend Therapeutics, for combination medicines. In 2012, MicroCHIPS completed the first human trials of a wirelessly controlled chip that delivers a drug to stimulate bone formation in osteoporosis patients. A silicon chip with doses of the drug stored in individual reservoirs, each capped with a thin film of platinum and titanium, it releases its contents in response to wireless electric signals. Langer predicts that sensors and drug delivery function will someday be incorporated in a single implantable device which can release drugs in direct response to signals from the body. That same year, Robert Langer received the Priestley Medal, the highest honor of the American Chemical Society. It was the first time in 65 years that the award was given to a chemical engineer, and the first time it was given to a bioengineer. In 2013, he received the newly created Breakthrough Prize in Life Sciences. Financed by a group of entrepreneurs including Google's Sergey Brin and Facebook's Mark Zuckerberg, the award amounts to $3 million per individual recipient, making it the largest prize purse in science, more than twice as much as that shared by multiple Nobel Prize recipients in any category. Two years later, he was awarded the 2015 Queen Elizabeth Prize for Engineering, for his revolutionary leadership "at the interface of chemistry and medicine."

Today, Robert Langer occupies an unparalleled position in science, business and education. He is the David H. Koch Institute Professor in the Department of Biochemistry. An Institute Professorship is the highest honor a faculty member can hold at MIT; Robert Langer's professorship was endowed by MIT graduate David H. Koch of Koch Industries. Langer Laboratory at MIT -- with over 100 students, postdocs and visiting scientists at any one time -- is the world's largest academic biomedical engineering laboratory.

Robert Langer Biography Photo
By the end of 2013, Robert Langer had authored more than 1,200 publications. More than 1,025 patents had been issued in his name or were pending; more than 250 companies had licensed or sub-licensed Langer Lab patents. His work has been cited in scientific publication more than 170,000 times, more than that of any other engineer in history. In 2015, his accomplishment was honored with the £1 million Queen Elizabeth Prize for Engineering.

Today, Dr. Langer spends roughly one day a week working with the businesses he helped start. He serves on the boards of 12 of these, and is an informal adviser to four. His entrepreneurial activities have made him a millionaire, but his primary motivation remains improving the health of men, women and children around the world. In recent years, Langer Lab has been working with the U.S. Army on a regenerative tissue project for wounded soldiers.

It has been estimated that the lives of as many as two billion people have been touched by the technologies created by Robert Langer and his research teams. Many of his former students now lead companies or laboratories of their own, and advise governments on medical technology. As a colleague has said of Dr. Langer's students, "They come away thinking that nothing is impossible."




This page last revised on Oct 27, 2015 14:37 EDT
How To Cite This Page